O que é LLM? Entenda para que serve e como funciona um Large Language Model

Os LLMs estão presentes no ChatGPT, Gemini, LLaMA, Copilot, entre outros. LLM significa “Large Language Model”. Seus principais desenvolvedores são a OpenAI e o Google LLM é um modelo de linguagem computacional que utiliza a rede neural artificial para trabalhar com parâmetros na análise de informações da linguagem humana, gerando imagens, textos, áudios e vídeos.

Os LLMs estão presentes no ChatGPT, Gemini, LLaMA, Copilot, entre outros. LLM significa “Large Language Model”. Seus principais desenvolvedores são a OpenAI e o Google

Leia mais

LLM é um modelo de linguagem computacional que utiliza a rede neural artificial para trabalhar com parâmetros na análise de informações da linguagem humana, gerando imagens, textos, áudios e vídeos. Nele objetiva-se comunicar-se com linguagem natural gerando soluções via simulação de uma conversa entre pessoas.

Leia mais

Um Modelo de Linguagem de Larga Escala funciona através do processamento de grandes quantidades de textos. Ao analisar os dados, são utilizados parâmetros, que são instruções para a inteligência artificial reconhecer padrões. Assim, as informações de uma conversa são interpretadas para produzir determinada resposta.

Leia mais

Para obter precisão na resposta, o Large Language Model passa por treinamentos via Redes Neurais Artificiais. As RNAs são inspiradas no nosso cérebro e através do deep learning, cria-se diversas camadas, onde a base gira em torno de parâmetros e machine learning.

Leia mais

Os termos, o funcionamento e as aplicações dos LLMs foram descritos a seguir.

Leia mais

LLM é um modelo de linguagem formado por uma rede neural artificial com muitos parâmetros para gerar tarefas de Processamento de Linguagem Natural (NLP), um subcampo da inteligência artificial que se preocupa em fornecer ao computador a capacidade de processar dados codificados em “Linguagem Natural”.

Leia mais

Nesse contexto, quando se fala em “Linguagem Natural”, refere-se à linguagem humana. A sigla LLM significa “Large Language Model”, que ao traduzir do inglês, adaptando ao português, fica “Modelo de Linguagem em Grande Escala”. Atualmente, os modelos mais conhecidos são os desenvolvidos pela OpenAI, Google e Meta.

Leia mais

Geralmente, a análise de dados é feita através de uma grande quantidade de textos utilizando-se de trilhões de parâmetros.

Leia mais

Parâmetros são instruções criadas para que a inteligência artificial possa reconhecer padrões ao analisar as informações. Quanto maior o número de parâmetros, maior a capacidade de um modelo de linguagem reconhecer interações complexas entre os dados obtidos.

Leia mais

As LLMs podem ser utilizados para diversas aplicações que envolvem a análise e geração dados no formato de textos, imagens e vídeos. Os modelos de linguagem em grande escala mais populares são o ChatGPT e o Gemini, mas há outros além destes.

Leia mais

Os chatbos da OpenAI e do Google, através da utilização de inteligência artificial, são capazes de realizar tarefas como, por exemplo:

Leia mais

Um LLM funciona através da análise da linguagem humana ao processar grandes quantidades de textos por meio de trilhões de parâmetros, que são regras criadas para o reconhecimento de padrões. Desta forma, o modelo de linguagem interpreta informações apresentadas para produzir uma resposta.

Leia mais

Os parâmetros do LLM utilizam “pesos” para determinar o relacionamento entre a entrada (prompt, comando) e a saída (resposta). Estes pesos são “aprendidos” através do treinamento do sistema de inteligência artificial, que é realizado através de Redes Neurais Artificiais (RNAs).

Leia mais

As Redes Neurais Artificiais são modelos computacionais inspirados pelo sistema nervoso central do nosso cérebro. Estes modelos utilizam técnicas de machine learning, a base do deep learning (aprendizado profundo), subcampo do aprendizado de máquina, que traz múltiplas camadas dentro de uma RNA.

Leia mais

A ideia de múltiplas camadas é tentar imitar a forma com que o cérebro humano processa, por exemplo, a luz e a audição. Há camadas com estruturas diferentes, que variam de acordo com o problema. Para que o funcione, há um sistema de hierarquias de características, indo de um nível baixo para um nível alto.

Leia mais

Desde o boom de sistemas de IA Generativos em 2020, uma arquitetura de deep learning chamada “transformer” tem sido aplicada LLMs como ChatGPT, Gemini, LLaMA, Copilot, entre outros.

Leia mais

Os principais LLMs existentes utilizam redes neurais artificiais treinadas através de uma arquitetura baseada em “transformer”, que é um tipo de arquitetura de aprendizado profundo.

Leia mais

A “transformer” foi desenvolvida por pesquisadores do Google e funciona através do mecanismo “multi-head attention”, proposto em 2017. O mecanismo “multi-head attention” funciona convertendo um texto em representações numéricas chamadas tokens.

Leia mais

A “transformer” é útil para os LLMs, pois requer menos tempo de treinamento que outros tipos de arquiteturas de deep learning. Hoje há variações da “transformer” que são utilizadas para treinar grandes LLMs, como a corpus da Wikipedia e a Common Crawl.

Leia mais

A maior vantagem de um LLM está na capacidade de utilizar múltiplos tipos de dados (texto, áudio e imagem). Com o multimodal learning, um tipo de deep learning, combina-se diferentes modelos unimodais, gerando respostas com informações mais precisas. Além disso, o LLM apresenta outras vantagens como:

Leia mais

Os LLMs possuem um grande potencial para diversas áreas da tecnologia, trazendo uma revolução para vários processos.

Leia mais

O que principal limitador de um LLM é o número de parâmetros que o modelo possui. Embora seja possível ajustar um parâmetro através de treinamentos, como as informações advém de interações entre pessoas e produção de conteúdo na internet, existem barreiras que ainda são difíceis de transpassar. Entre as limitações, estão:

Leia mais

Devido às limitações atuais da tecnologia de IA Generativa dos LLMs, está claro que embora haja um grande potencial, é necessário ter cautela com seu uso.

Leia mais

Receba mais posts do TB

Leia mais

O que a Meta ganha com a Llama livre?

Leia mais

Compartilhe

Leia mais

Vitor Valeri

Leia mais

Leia mais

Lucas Lima

Leia mais

Coordenador de conteúdo

Leia mais

Lucas Lima trabalha no Tecnoblog desde 2019 cobrindo software, hardware e serviços. Pós-graduando em Data Science, formou-se em Jornalismo em 2018 e concluiu o técnico em Informática em 2014, mas respira tecnologia desde 2006, quando ganhou o primeiro computador e varava noites abrindo janelas do Windows XP. Teve experiências com comunicação no poder público e no setor de educação musical antes de atuar na estratégia de conteúdo e SEO do TB.

Leia mais
Leia maisLeia mais

Gostou deste story?

Aproveite para compartilhar clicando no botão acima!

Visite nosso site e veja todos os outros artigos disponíveis!

AI Tools